HCN Channels—Modulators of Cardiac and Neuronal Excitability

نویسندگان

  • Stefan Herrmann
  • Sabine Schnorr
  • Andreas Ludwig
چکیده

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels comprise a family of cation channels activated by hyperpolarized membrane potentials and stimulated by intracellular cyclic nucleotides. The four members of this family, HCN1-4, show distinct biophysical properties which are most evident in the kinetics of activation and deactivation, the sensitivity towards cyclic nucleotides and the modulation by tyrosine phosphorylation. The four isoforms are differentially expressed in various excitable tissues. This review will mainly focus on recent insights into the functional role of the channels apart from their classic role as pacemakers. The importance of HCN channels in the cardiac ventricle and ventricular hypertrophy will be discussed. In addition, their functional significance in the peripheral nervous system and nociception will be examined. The data, which are mainly derived from studies using transgenic mice, suggest that HCN channels contribute significantly to cellular excitability in these tissues. Remarkably, the impact of the channels is clearly more pronounced in pathophysiological states including ventricular hypertrophy as well as neural inflammation and neuropathy suggesting that HCN channels may constitute promising drug targets in the treatment of these conditions. This perspective as well as the current therapeutic use of HCN blockers will also be addressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INVITED REVIEW HCN-related channelopathies

HCN channels are the molecular subunits of native funny (f-) channels of cardiac pacemaker cells and neurons. Although funny channels were first functionally described in cardiac cells in the late 1970s, cloning of HCN channels, of which four subunits are known today (HCN1-4), had to wait some 20 years to be accomplished, which delayed the investigation of HCN-related channelopathies. In cardia...

متن کامل

Targeted Deletion of Kcne2 Impairs HCN Channel Function in Mouse Thalamocortical Circuits

BACKGROUND Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate the pacemaking current, I(h), which regulates neuronal excitability, burst firing activity, rhythmogenesis, and synaptic integration. The physiological consequence of HCN activation depends on regulation of channel gating by endogenous modulators and stabilization of the channel complex formed by principal a...

متن کامل

Role of HCN channels in neuronal hyperexcitability after subarachnoid hemorrhage in rats.

Disruption of ionic homeostasis and neuronal hyperexcitability contribute to early brain injury after subarachnoid hemorrhage (SAH). The hyperpolarization-activated/cyclic nucleotide (HCN)-gated channels play critical role in the regulation of neuronal excitability in hippocampus CA1 region and neocortex, in which the abnormal neuronal activities are more readily provoked. This study was to inv...

متن کامل

High-conductance states and A-type K+ channels are potential regulators of the conductance-current balance triggered by HCN channels.

An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, c...

متن کامل

O3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice

The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015